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Abstract— A portable system for rapid wheezing detection is proposed, designed for long-term patient monitoring and potential 

integration with other biomedical signal systems. The system utilizes a field-programmable gate array (FPGA) to accelerate the detection 

process. Sound signals are segmented into 2-second units and analyzed using a short-time Fourier transform to create spectrograms. 

These spectrograms are then processed using a series of techniques including 2D bilateral filtering, edge detection, multi -threshold 

image segmentation, morphological image processing, and image labeling. This processing extracts wheezing features based on 
computerized respiratory sound analysis (CORSA) standards. These features are used to train a support vector machine (SVM) fo r 

wheezing classification. The system is implemented on a Xilinx Virtex-6 FPGA ML605 platform. Testing demonstrates a wheezing 

recognition performance of 0.912, with the detection process operating at a clock frequency of 51.97 MHz, enabling rapid classification. 

 

Index Terms: rapid wheezing detection, field-programmable gate array (FPGA), spectrogram image processing, support vector 

machine (SVM). 

 

I. INTRODUCTION 

Asthma and chronic obstructive pulmonary disease 

(COPD) are prevalent, with environmental factors like air 

pollution contributing to their rise. Analyzing respiratory 

sounds, particularly wheezing, can provide valuable 

diagnostic information about lung health. Current d iagnostic 

methods for asthma include auscultation, spirometry, and 

peak exp iratory  flow measurement. Auscultation is 

subjective, while spirometry can be uncomfortable and 

unsuitable for continuous monitoring. Analyzing recorded 

lung sounds via signal processing offers a more objective 

approach to identifying abnormal characteristics and 

understanding the underlying physiological mechanisms. 

Asthma is a chronic d isease with a risk o f life-threatening 

acute attacks. Effective long-term management is crucial, but 

many patients discontinue treatment, lead ing to declin ing 

lung function. A portable, rapid wheezing detection system is 

needed for timely warnings and home care. Wheezes are 

abnormal respiratory sounds characterized by  specific 

frequency (above 100 Hz) and duration (over 100 ms). 

Spectrograms are commonly used for wheeze analysis, but 

are susceptible to noise. Existing wheezing feature extract ion 

methods include combin ing classification models with 

algorithms (computationally intensive) and image processing 

of spectrogram edges (resolution-dependent). The 

computational demands of accurate wheezing detection often 

restrict traditional systems to desktop computers. Portable 

systems using DSPs may be limited by sequential processing, 

while custom ICs are inflexib le and expensive. Our wheezing 

recognition system, illustrated in Figure 1, comprises three 

stages: 1. Preprocessing: A short-time Fourier transform 

(STFT) generates a spectrogram representing the 

time-frequency characteristics of the wheezing sound. 

2.Spectrogram Masking: Bilateral filtering reduces noise 

while preserving edges. Subsequent image processing 

techniques (edge detection, multi-threshold segmentation, 

and morphological processing) identify potential wheezing 

regions. These regions are then validated against two 

CORSA-based rules to ensure they represent actual wheezes. 

3.Feature Extract ion and Classification: Features 

representing the wheezing components within the masked 

spectrogram are extracted and classified using a Support 

Vector Machine (SVM). Spectrogram image processing is 

central to this system. Unlike trad itional methods that directly 

analyze spectrogram edges or solely rely on peak continuity 

rules after filtering, our approach combines these strategies. 

Bilateral filtering smooths the image while preserving 

prominent edges. The combination of edge detection and 

multi-threshold segmentation maintains both edge integrity 

and distinct peaks for analysis. 

 
Figure 1. Wheeze detection algorithm processing flow 
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1.1. SoPC Hardware Architecture: 

The proposed wheezing detection system was  

implemented as an independent Wheezing Detection System 

IP (WDSIP). Following a System-on-a-Programmable-Chip  

(SoPC) design flow, the WDSIP can be integrated with other 

subsystems on a single FPGA, enabling efficient on-chip  data 

transfer and reducing I/O requirements and external IC usage. 

This design allows for both standalone operation and 

integration within a larger physiological parameter 

measurement system. Using Xilinx's Embedded 

Development Kit (EDK), a MicroBlaze soft processor was 

embedded within the WDSIP, as shown in Figure 2. Th is 

enables communication with other hardware IPs via the 

Processor Local Bus (PLB). Provided the WDSIP's timing 

adheres to the PLB communicat ion protocol, the MicroBlaze 

can control register settings within the memory map. 

 
Figure 2. Integrated WDSIP with MicroBlaze processor 

1.2. Proposed Wheezing Sound Detection System 

The WDSIP is designed for PLB communication with  

other cores. Given the extensive read/write operations 

involved in bilateral filtering and image mask generation 

(Figure 1), on-chip memory within the WDSIP stores 

intermediate data. This minimizes PLB bandwidth usage and 

improves processing speed. The WDSIP utilizes a single PLB 

slave interface. The MicroBlaze processor's role is limited to 

writing sound data to the WDSIP and reading the final 

classification result from a control register in the memory  

map. 

 
Figure 3. Memory management. 

Table 1. WDSIP internal register. 

 

II.  DESIGN OF WDSIP 

Wheezing sounds are characterized by a fundamental 

frequency and its harmonics. Visually, these appear as 

nearhorizontal lines on a spectrogram, indicating a dominant 

frequency sustained over time. Our WDSIP is designed for 

rapid identificat ion of these wheezing patterns by 

distinguishing their edges from background noise within the 

spectrogram. The key components of the WDSIP are 

described below.  

2.1.  STFT Implementation 

 Once the WDSIP receives a frame of audio data, the FSM 

proceeds to the STFT stage. A 256-deep dual-port RAM, 

configured in read-after-write mode, temporarily stores the 

data. This allows the newly stored data to be available at  the 

output port after a single clock cycle. This data is then 

multip lied by a Hanning window to generate the first data 

frame. The RAM's other port waits 128 cycles before reading 

the next 128 data points to compute the subsequent frame. 

This process repeats to implement a 50% overlapping 

Hanning window. Figure 8 illustrates the hardware 

implementation of this windowing process. 

 
Figure 4. Implementation of 50% overlapping Hanning 

window. 

2.2.  Implementation of the Bilateral Filter  

Our WDSIP's bilateral filter implementation is based on 

the method described in [26]. A 7x7 filter mask is 

implemented in hardware. Calcu lating a single filtered pixel 

requires computing 49 weights and multip lying them by the 

corresponding neighboring pixels. To  avoid excessive 

computation and reliance on external memory, a line buffer 

and register matrix are used to implement the filter mask. 

This enables continuous image processing, with a new pixel 

processed at each clock cycle. The image mask shifts 
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horizontally with each pixel clock, ensuring all necessary 

neighborhood values are available for weight calculat ion. A 

filtered central pixel is thus generated at every pixel clock, a 

speed not readily achievable on a s tandard desktop PC. 

Figure 9's t iming diagram illustrates the delay line-based 

hardware implementation for populating the filter window. 

 
Figure 5. Implementation of the line buffer. 

2.3.  Implementation of Multithreshold Image 

Segmentation  

Multi-threshold segmentation involves applying a 

threshold to the filtered spectrogram, labeling resulting 

image objects, and isolating them based on defined rules. The 

hardware implementation of the labeling system. Init ially, a  

class register array is cleared and init ialized. Two pixels (P1 

and P2) from the thresholded image are read and assigned to a 

label b lock for temporary labeling. These labeled pixels are 

then sent to both temporary image memory  and delay lines 

for moving window implementation and connectivity 

checking. Because the labeling block may generate two  

equivalent pairs concurrently, and the class register updates 

serially, a combin ing block processes these pairs, ensuring 

they are sent one at a time. Finally, the temporary images are 

read from memory and connected based on the class register 

array's contents. Isolating wheezing components through 

multi-threshold image segmentation, which may require 

multip le iterat ions with varying thresholds and object 

characteristic analysis, is the most time-intensive process in 

the WDSIP. To optimize speed and resource utilization, 

dual-port RAM and pipelining are applied to the image 

labeling system for maximum clock rate and throughput. 

However, due to the simultaneous use of one RAM port for 

bilateral filter output, that port's operational frequency is 

limited. To address this, a time -division demult iplexer 

concurrently sends two pixels to the labeling b lock, and a 

time-d ivision mult iplexer combines the labeling system's 

output. This maintains the maximum p ixel processing rate 

while halving the timing constraints within the labeling 

system. 

 
Figure 6. Hardware architecture of image labeling. 

 
Figure 7. Modified raster scan for labeling system. 

2.4.  Implementation of Wheezing Mask Formation  

While mult i-threshold segmentation identifies numerous 

objects meeting CORSA criteria, not all are actual wheezes. 

Therefore, edge detection is used to identify quasi-horizontal 

lines with significant gradients. Combining the results of 

multi-threshold segmentation and edge detection creates a 

mask, isolating objects with both high intensity and distinct 

edges, which are then classified as wheezing components. 

Figure 13 shows the hardware implementation of the Prewitt 

edge detection operator. 

 
Figure 8. Edge detection processing elements. 

III. RESULTS AND DISCUSSION 

3.1.  Wheezing Sound Detection Results  

An SVM classifier was used to distinguish wheezing from 

normal sounds based on the properties of the spectrogram 

objects identified by the mask. Four parameters were chosen 

as wheezing features  

1. PCY: Centroid frequency of the wheezing episode.  

2. PT: Duration of the wheezing episode.  

3. PS: Slope of the wheezing episode.  

4. PAR: Rat io of the wheezing episode area to its bounding 

box area.  
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Figure 9 Parameter for extracting wheezing features. 

The SVM classifier requires prior t rain ing. An RBF kernel 

and grid search were used to optimize the σ parameter for 

optimal performance. Figure 15 shows the wheezing 

recognition accuracy achieved with different SVM parameter 

sets. This analysis validated the chosen parameters' 

effectiveness in representing wheezing features and 

identified the most efficient parameter combination. Breath 

sound recordings from Nat ional Taiwan University Hospital 

[27] were used, divided into train ing (11 asthmatic patients, 

10 healthy individuals) and testing (13 asthmatic patients, 12 

healthy individuals) sets. All sound files were segmented into 

2-second units.  

 

 
Figure 10 (a, b, c, d, e, f, g) 

Figure 11 (a) Grid searching (Features: PT, PCY); (b) Grid  

searching (Features: PT, PAR); (c) Grid searching (Features: 

PT, PS); (d) Grid searching (Features: PT, PCY, PAR); (e) 

Grid searching (Features: PT, PCY, PS); (f) Grid searching 

(Features: PT, PAR, PS); (g) Grid searching (Features: PT, 

PCY, PAR, PS) 

Train ing results showed the system achieved up to 96.63% 

accuracy using feature sets (PT, PS) and (PT, PAR, PS). The 

trained SVM models were then used to classify the testing 

data. System performance was evaluated by calculating 

sensitivity (SE) and specificity (SP). 

 

TAnalysis of the testing samples with various parameter 

sets showed the best performance with (PT, PS) and (PT, 

PAR, PS). The (PT, PS) set was chosen for hardware 

implementation due to its lower resource requirements. 

Figures 16 and 17 show the results of this 

hardware-implemented SVM. Wheezing is detected when the 

SVM output exceeds 26. To verify the WDSIP's wheezing 

detection performance after hardware implementation, the 

same testing samples were sent to the platform via the UART 

port. Tera Term, with a serial port band rate of 115,200 bps, 

was used for connection to the platform to assess UART 

transmission reliab ility. A data set (0-232) was written. to a 

file, and sent this file to the platfo rm,  where a program we 

had written compared the received data with an accumulator, 

the estimated error rate of UART transmission was obtained. 

The results show that no errors were observed when these 

4,294,967,296 testing samples were sent to the platform. As  

previously mentioned, fixed-point hardware operations allow 

for prediction of wheezing recognition error. To estimate this 

error, hardware results were compared against the 

assumed-correct software results. The primary source of 

discrepancy is the LUT depth used for storing photometric 

filter weights. Weight coefficient quantization, with 8192 

stored coefficients and a precision limited to 0.01, introduces 

quantization error. This error reduces the signal-to-noise ratio  

(SNR) of the wheezing signal, impacting system 

performance. 
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Table 2. Recognition results for different features. 

 

Table 3. Recognition results from Matlab and hardware. 

 

Table 3 shows that hardware performance is affected by 

quantization error. Th is error significantly impacts wheezing 

detection, which relies on gradient estimat ion via 

first-derivative calcu lations. Increasing LUT size for higher 

precision is a potential solution, but it  increases hardware 

resource demands. Therefore, a new SVM model was trained 

using features directly extracted from the hardware, allowing 

the SVM to compensate for the quantization effects. 

3.2.  Implementation Results of the WDSIP  

The WDSIP was implemented using a Xilinx Virtex-6 

FPGA ML605 platfo rm. The internal placement and routing 

of the FPGA is illustrated in Figure 11. The total hardware 

resources used by the WDSIP are listed in Table 4 and Figure 

12 

Table 4. A summary of the resource usage by WDSIP. 

 

 
Figure 12. FPGA internal placement and routing 

 
Figure 13. Implemented utilization. 

IV. CONCLUSIONS 

Wheezing detection systems have traditionally relied on  

desktop PCs, which are slow and lack portability. For home 

care, portable devices offer increased patient comfort. Th is 

study presents a portable WDSIP designed for PC-free 

wheezing analysis, suitable for remote medical applications. 

Implemented on a Xilinx FPGA, the WDSIP operates at 

51.97 MHz, enabling rapid wheezing detection—a speed not 

attainable with conventional methods. Compatibility with the 

Xilinx PLB and control via the Xilinx MicroBlaze provide 

flexib ility for integration with other biomedical signal 

systems within  complex SoPCs. Furthermore, the WDSIP's 

implementation using advanced CMOS processes reduces 

power consumption, a key concern for PC-based systems 

used in long-term monitoring. Future improvements include 

hardware optimization  to minimize resource usage and 

enhance commercial viab ility. Better management of noise 

interference and fixed-point computational errors is also 

necessary. Finally, the addition of peripheral devices, such as 

LCD displays or storage, would empower doctors to use the 

system for lung disease diagnosis and facilitate 

implementation in remote medical assistance scenarios. 
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